In some areas near the basin margins, shallow perched groundwater zones (depth-to-water < 100 feet) were observed that may be isolated from the regional, basin-fill aquifer system.
THE ARIZONA DEPARTMENT OF WATER RESOURCES

WELL DEPTH STATISTICS IN DOUGLAS BASIN
WATER YEAR 2015

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 8th, 2016
Created By: Scott Stuk and James Dieckhoff
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Stats

Hydrology Division

WC : Well Count; Min HD : Minimum Hole Depth; Max HD : Maximum Hole Depth; Median HD : Median Hole Depth; Mean HD : Mean Hole Depth

HYDROLOGY DIVISION

DOUGLAS BASIN

ARIZONA WATER RESOURCES

DOUGLAS INA INSIDE DOUGLAS GROUNDWATER BASIN

PROPERTY SURVEYED: DOUGLAS INA INSIDE DOUGLAS GROUNDWATER BASIN

ARIZONA GROUNDWATER BASINS

ARIZONA DEPARTMENT OF WATER RESOURCES

SOUTHEAST ARIZONA HYDROLOGIC MONITORING REPORT
PLATE 3 of 38

HYDROLOGY DIVISION
DEPTH-TO-BEDROCK IN DOUGLAS BASIN

Explanation
- Depth-to-Bedrock Contours (Contour Interval 400 feet)
- Streams
- Hard Rock
- Douglas Basin
- Townships

Data Source: (AZGS, 2007)

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 11th, 2015
Created By: Brian Conway and James Dieckhoff
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\DEPTH TO BEDROCK

A.D.W.R HYDROLOGIC MONITORING REPORT NO. 9
SOUTHEAST ARIZONA HYDROLOGIC MONITORING REPORT PLATE 4 of 38

Compiled in January 2015, for the
Arizona Department of Water Resources
1 North Central Avenue, Suite 300
Phoenix, Arizona 85004-2102
For more information or copies contact:
ADWR Hydrologic Services, 1100 North Central Avenue Phoenix, AZ 85004-2102
www.azwater.gov

Hydrology Division
GROUNDWATER LEVEL CHANGES IN DOUGLAS BASIN
WATER YEARS 2005 - 2015

Explanation

- Cities
- Townships
- Streams
- Highway
- Schools
- Water Wells
- Elevation Contours

Explanation

* Red dots indicate declines in water levels for both years (WY 2005 and WY 2015). The number next to each red point (20) represents the difference in water levels.

* Green dots indicate rises in water levels for both years (WY 2005 and WY 2015). The number next to each green point (−3) represents the difference in water levels.

* A blank dot indicates that no data were collected or that the water level in one or both years was unmeasurable.

For more information or copies contact:
ADWR Information Services
Phoenix, AZ 85012
www.azwater.gov

For data go to:
https://gisweb.azwater.gov/waterresourcedata/
WATER LEVEL CHANGE STATISTICS IN DOUGLAS BASIN
WATER YEARS 2005 - 2015

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 8th, 2016
Created By: Scott Stuk and James Dieckhoff
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Stats

Hydrology Division

WC : Well Count; Median WLC : Median Water Level Change; Mean WLC : Mean Water Level Change;
Median RWLC : Median Rate Of Water Level Change; Mean RWLC: Mean Rate Of Water Level Change

- WC : 10
 Median WLC : 5.5
 Mean WLC : 7.8
 Median RWLC : 0.6
 Mean RWLC : 0.8
 Wells Rising : 9
 Wells Declining : 1

- WC : 10
 Median WLC : -0.4
 Mean WLC : -5.4
 Median RWLC : 0
 Mean RWLC : -0.5
 Wells Rising : 4
 Wells Declining : 5

- WC : 37
 Median WLC : -39.6
 Mean WLC : -36.5
 Median RWLC : -4
 Mean RWLC : -3.6
 Wells Rising : 1
 Wells Declining : 36

- WC : 18
 Median WLC : -5.5
 Mean WLC : -4.7
 Median RWLC : -1
 Mean RWLC : -0.5
 Wells Rising : 1
 Wells Declining : 16

- WC : 23
 Median WLC : -16.9
 Mean WLC : -20.8
 Median RWLC : -1.7
 Mean RWLC : -2.1
 Wells Rising : 1
 Wells Declining : 22

- WC : 3
 Median WLC : -39
 Mean WLC : -20.2
 Median RWLC : -3.9
 Mean RWLC : -2
 Wells Rising : 1
 Wells Declining : 2

- WC : 4
 Median WLC : -4.6
 Mean WLC : -5.5
 Median RWLC : -0.5
 Mean RWLC : -0.6
 Wells Rising : 0
 Wells Declining : 3

- WC : 11
 Median WLC : -39.7
 Mean WLC : -33.6
 Median RWLC : -4
 Mean RWLC : -3.4
 Wells Rising : 0
 Wells Declining : 11

- WC : 40
 Median WLC : -8.8
 Mean WLC : -8.5
 Median RWLC : -0.9
 Mean RWLC : -0.8
 Wells Rising : 0
 Wells Declining : 38

- WC : 17
 Median WLC : -13.3
 Mean WLC : -11.2
 Median RWLC : -1.3
 Mean RWLC : -1.1
 Wells Rising : 1
 Wells Declining : 15

- WC : 14
 Median WLC : -4.8
 Mean WLC : 0.7
 Median RWLC : -0.5
 Mean RWLC : 0.1
 Wells Rising : 1
 Wells Declining : 13

- WC : 7
 Median WLC : -1.9
 Mean WLC : -1.8
 Median RWLC : -0.2
 Mean RWLC : -0.2
 Wells Rising : 3
 Wells Declining : 4

- WC : 4
 Median WLC : -9.4
 Mean WLC : -10.9
 Median RWLC : -0.9
 Mean RWLC : -1.1
 Wells Rising : 1
 Wells Declining : 3

- WC : 7
 Median WLC : -17.5
 Mean WLC : -16.2
 Median RWLC : -1.8
 Mean RWLC : -1.6
 Wells Rising : 0
 Wells Declining : 7

- WC : 11
 Median WLC : -3.1
 Mean WLC : -3.3
 Median RWLC : -0.2
 Mean RWLC : -0.3
 Wells Rising : 4
 Wells Declining : 6

- WC : 2
 Median WLC : -13.4
 Mean WLC : 22.7
 Median RWLC : -1.3
 Mean RWLC : -1.6
 Wells Rising : 1
 Wells Declining : 1

- WC : 1
 Median WLC : -0.2
 Mean WLC : -0.2
 Median RWLC : 0
 Mean RWLC : 0
 Wells Rising : 0
 Wells Declining : 0

- WC : 1
 Median WLC : 14.1
 Mean WLC : 14.1
 Median RWLC : 1.4
 Mean RWLC : 1.4
 Wells Rising : 1
 Wells Declining : 0

- WC : 1
 Median WLC : 14.1
 Mean WLC : 14.1
 Median RWLC : 1.4
 Mean RWLC : 1.4
 Wells Rising : 1
 Wells Declining : 0

- WC : 1
 Median WLC : -0.2
 Mean WLC : -0.2
 Median RWLC : 0
 Mean RWLC : 0
 Wells Rising : 0
 Wells Declining : 0

- WC : 2
 Median WLC : -13.4
 Mean WLC : 22.7
 Median RWLC : -1.3
 Mean RWLC : -1.6
 Wells Rising : 1
 Wells Declining : 1

- WC : 1
 Median WLC : 16.1
 Mean WLC : 16.1
 Median RWLC : 1.6
 Mean RWLC : 1.6
 Wells Rising : 1
 Wells Declining : 0

- WC : 1
 Median WLC : -0.2
 Mean WLC : -0.2
 Median RWLC : 0
 Mean RWLC : 0
 Wells Rising : 0
 Wells Declining : 0
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ERS-1 and ERS-2 satellites.

Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, indicating that the land surface has been disturbed (e.g., bodies of water, new or abandoned agriculture areas, areas of development, etc.).
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ALOS-1 and Radarsat-2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. These areas are zones where the land surface has been disturbed (i.e. bodies of water, west, agriculture areas, areas of development, etc.).

Created on January 11th, 2015
Created By: Brian Conway and James Dieckhoff
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\LAND SUB
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using Radarsat-2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e. bodies of water, snow, agricultural areas, areas of development, etc.).
In some areas near the basin margins, shallow perched groundwater zones (depth to water < 100 feet) were observed that may be isolated from the regional, basin-fill aquifer system.
WELL DEPTH STATISTICS IN SAN SIMON VALLEY SUBBASIN
WATER YEAR 2015

Created By: Scott Stuk and James Dieckhoff

Hydrology Division

Explanation

- **WC**: Well Count
- **Min HD**: Minimum Hole Depth
- **Max HD**: Maximum Hole Depth
- **Median HD**: Median Hole Depth
- **Mean HD**: Mean Hole Depth

Hard Rock Streams

San Simon Valley and New Mexico Basins

Around Prescott

Around Tucson

Median HD: 300
Max HD: 700
Min HD: 25
WC: 12

Median HD: 297.5
Mean HD: 326.9
Max HD: 400
Min HD: 168
WC: 4

Median HD: 353
Mean HD: 500
Max HD: 550
Min HD: 50
WC: 4

Median HD: 182.5
Mean HD: 195
Max HD: 4110
Min HD: 140
WC: 57

Median HD: 274.5
Mean HD: 246.6
Max HD: 1040
Min HD: 200
WC: 5

Median HD: 102
Mean HD: 43.3
Max HD: 852
Min HD: 30
WC: 11

Median HD: 102
Mean HD: 706.8
Max HD: 1818
Min HD: 110
WC: 2

Median HD: 75
Mean HD: 518.6
Max HD: 1925
Min HD: 400
WC: 2

Median HD: 680
Mean HD: 677.4
Max HD: 550
Min HD: 65
WC: 2

Median HD: 522.5
Mean HD: 522.5
Max HD: 375
Min HD: 520
WC: 1

Median HD: 640
Mean HD: 888.7
Max HD: 2000
Min HD: 140
WC: 5

Median HD: 182.5
Mean HD: 1226.7
Max HD: 2000
Min HD: 200
WC: 4

Median HD: 150
Mean HD: 123
Max HD: 1325
Min HD: 200
WC: 5
THE ARIZONA DEPARTMENT OF WATER RESOURCES

GROUNDWATER ELEVATION CONTOURS
IN SAN SIMON VALLEY SUBBASIN WATER YEAR 2007
REGIONAL AQUIFER

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis

North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation

* Well Hydrographs for the San Simon Valley Sub-basin are located in Appendix A

Contour interval 100 feet with supplement contours at 50 feet intervals.

* Townships

Streams
Hard Rock
THE ARIZONA DEPARTMENT OF WATER RESOURCES

GROUNDWATER ELEVATION CONTOURS
IN SAN SIMON VALLEY SUBBASIN WATER YEAR 2007
(NON-REGIONAL AQUIFER)

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7th, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation

- Cities
- Well Hydrographs *
- 2007 Contour Line (Foot) *
- Streams
- Hard Rock
- San Simon Valley and New Mexico Basins
- Townships

* Contour interval 100 feet with supplement contours at 50 foot intervals.
* Well Hydrographs for the San Simon Valley Sub-basin are located in Appendix 8.

ARIZONA GROUNDWATER BASINS

ARIZONA GROUNDWATER BASINS

GROUNDWATER ELEVATION CONTOURS
IN SAN SIMON VALLEY SUBBASIN WATER YEAR 2007
(NON-REGIONAL AQUIFER)
THE ARIZONA DEPARTMENT OF WATER RESOURCES

GROUNDWATER ELEVATION CONTOURS
IN SAN SIMON VALLEY SUBBASIN WATER YEAR 2015
REGIONAL AQUIFER

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7th, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation

- Color
- Well Hydrographs*
- 2015 Contour Lines (Feet)*
- Streams
- Hard Rock
- San Simon Valley and New Mexico Basins
- Townships

* Contour interval 100 feet with supplement contours at 50 foot intervals.
* Well Hydrographs for the San Simon Valley Sub-basin are located in Appendix A.

ARIZONA
NEW MEXICO
R 32 E
R 31 E
R 30 E
R 29 E
R 28 E
R 27 E
R 26 E
R 25 E
T 22 S
T 21 S
T 20 S
T 19 S
T 18 S
T 17 S
T 16 S
T 15 S
T 14 S
T 13 S
T 12 S
T 11 S
T 10 S
T 9 S
T 8 S

SAN SIMON GROUNDWATER SUBBASIN
INSIDE SAFFORD BASIN

ARIZONA GROUNDWATER BASINS
R 21 W
R 20 W
T 23 S
T 24 S
T 25 S
T 26 S
T 27 S
T 28 S
T 29 S
T 30 S
T 31 S

SAFFORD
SAN SIMON VALLEY
SAN SIMON GROUNDWATER SUBBASIN

A.D.W.R HYDROLOGIC MONITORING REPORT NO. 9
SOUTHEAST ARIZONA HYDROLOGIC MONITORING REPORT PLATE 20 of 38
THE ARIZONA DEPARTMENT OF WATER RESOURCES

GROUNDWATER ELEVATION CONTOURS
IN SAN SIMON VALLEY SUBBASIN WATER YEAR 2015
(NON-REGIONAL AQUIFER)

For data go to:
https://gisweb.azwater.gov/waterresourcedata/

For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7th, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis

North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation
- Cities
- Well Hydrographs
- 2015 Contour Lines (Feet)
- Streams
- Hard Rock
- San Simon Valley and New Mexico Basins
- Townships

Contour interval 100 feet with supplement contours at 50 feet intervals.
Well Hydrographs for the San Simon Valley Sub-basin are located in Appendix B.
Groundwater level changes in San Simon Valley Subbasin Water Years 2007 - 2015

Explanation

- Colors
 - Dark Blue: Depth to groundwater was measured for both years.
 - Light Blue: Depth to groundwater was measured for both years, but at a different location.
 - Yellow: Depth to groundwater was measured for one year.

- Signs
 - Diamond: Declines in water levels.

Well in which depth to groundwater was measured for both years.
Well in which depth to groundwater was measured for both years, but at a different location.
Well in which depth to groundwater was measured for one year.

Cities

Cottonwood

Cave Creek

Flagstaff

Phoenix

Phoenix

Source:

https://gisweb.azwater.gov/waterresourcedata/

For more information or specific questions, please contact:

ADWR Information Services

For data go to:

https://gisweb.azwater.gov/waterresourcedata/

For more information on water resources:

ADWR Information Services

For data go to:

https://gisweb.azwater.gov/waterresourcedata/

For more information or specific questions, please contact:

ADWR Information Services

For data go to:

https://gisweb.azwater.gov/waterresourcedata/
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ERS-1 and 2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e., bodies of water, new agriculture areas, areas of development, etc.).
THE ARIZONA DEPARTMENT OF WATER RESOURCES

LAND SUBSIDENCE IN SAN SIMON VALLEY SUBBASIN

01/04/2007 To 04/09/2015

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Hydrology Division

Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ALOS-1 and Radarsat-2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e. bodies of water, more agricultural areas, areas of development, etc).
Land subsidence data is based on satellite-based interferometric synthetic aperture radar (InSAR) data, using Radarsat-2 satellite.

Decorrelation (white area) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e., bodies of water, snow, agricultural areas, areas of development, etc.).
In some areas near the basin margins, shallow perched groundwater zones (depth-to-water < 100 feet) were observed that may be isolated from the regional, basin-fill aquifer system.
WELL DEPTH STATISTICS IN WILLCOX BASIN
WATER YEAR 2015

THE ARIZONA DEPARTMENT OF WATER RESOURCES
WILLCOX BOW WATERSHEDS

The data presented in this report is courtesy of the Arizona Department of Water Resources.
For more information, please visit arizona.gov/water/water-resources/
For data go to: 32°0'0"N
32°30'0"N
THE ARIZONA DEPARTMENT OF WATER RESOURCES

GROUNDWATER ELEVATION CONTOURS IN WILLCOX BASIN - WATER YEAR 2006

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7th, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation
- Cities
- Well Hydropgraphs*
- 2006 Contour Line (Foot)*
- Streams
- Hard Rock
- Townships
- Willcox Basin

* Contour interval 100 foot with supplement contours to 50 foot intervals.
* Well Hydrographs for the Willcox basin are located in Appendix 12.
* Non-regional water level elevation was not contoured.

ARIZONA GROUNDWATER BASINS

GROUNDWATER ELEVATION CONTOURS IN WILLCOX BASIN - WATER YEAR 2006

Hydrology Division
THE ARIZONA DEPARTMENT OF WATER RESOURCES
GROUNDWATER ELEVATION CONTOURS
IN WILLCOX BASIN - WATER YEAR 2015

For data go to: https://gisweb.azwater.gov/waterresourcedata/
For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov

Created on January 7th, 2016
Created By: Scott Stuk, James Dieckhoff, and Teri Davis
North American Datum 1983
N:\WRIS\SE AZ HMR 2014-2015\Maps\Print_Copy\Plates\WL_Contours

Explanation:
- Cities
- Well Hydrographs*
- Willcox Basin
- Townships
- Streams
- Hard Rock

2015 Contour Line (Feet)*

- Contour interval 100 feet with supplement contours at 50 foot intervals.
- Well Hydrographs for the Willcox basin are located in Appendix 12.
- Non-regional water level elevation was not contoured.

ARIZONA GROUNDWATER BASINS
GROUNDBWATER ELEVATION CONTOURS IN WILLCOX BASIN - WATER YEAR 2015

For more information or copies contact:
ADWR Information Services
3550 North Central Avenue
Phoenix, AZ 85012
(602) 771-8627
www.azwater.gov
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ERS-1 and 2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e., bodies of water, snow, agriculture areas, areas of development, etc.).
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using ERS-1 and 2 satellites.

Decorrelation/No Data are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e., bodies of water, snow, agriculture areas, areas of development, etc.).
Land subsidence data is based on satellite-based Interferometric Synthetic Aperture Radar (InSAR) data, using Radarsat-2 satellites. Decorrelation (white areas) are areas where the phase of the received satellite signal changed between satellite passes, causing the data to be unusable. This occurs in areas where the land surface has been disturbed (i.e. bodies of water, snow, agriculture areas, areas of development, etc.).

Hydrology Division